16 research outputs found

    Formation of the black-hole binary M33 X-7 via mass-exchange in a tight massive system

    Full text link
    M33 X-7 is among the most massive X-Ray binary stellar systems known, hosting a rapidly spinning 15.65 Msun black hole orbiting an underluminous 70 Msun Main Sequence companion in a slightly eccentric 3.45 day orbit. Although post-main-sequence mass transfer explains the masses and tight orbit, it leaves unexplained the observed X-Ray luminosity, star's underluminosity, black hole's spin, and eccentricity. A common envelope phase, or rotational mixing, could explain the orbit, but the former would lead to a merger and the latter to an overluminous companion. A merger would also ensue if mass transfer to the black hole were invoked for its spin-up. Here we report that, if M33 X-7 started as a primary of 85-99 Msun and a secondary of 28-32 Msun, in a 2.8-3.1 day orbit, its observed properties can be consistently explained. In this model, the Main Sequence primary transferred part of its envelope to the secondary and lost the rest in a wind; it ended its life as a ~16 Msun He star with a Fe-Ni core which collapsed to a black hole (with or without an accompanying supernova). The release of binding energy and, possibly, collapse asymmetries "kicked" the nascent black hole into an eccentric orbit. Wind accretion explains the X-Ray luminosity, while the black hole spin can be natal.Comment: Manuscript: 18 pages, 2 tables, 2 figure. Supplementary Information: 34 pages, 6 figures. Advance Online Publication (AOP) on http://www.nature.com/nature on October 20, 2010. To Appear in Nature on November 4, 201

    An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs

    Get PDF
    The survey for DUST in Nearby Galaxies with Spitzer (DUSTiNGS) identified several candidate Asymptotic Giant Branch (AGB) stars in nearby dwarf galaxies and showed that dust can form even in very metal-poor systems (Z0.008Z{\boldsymbol{Z}}\sim 0.008\,{Z}_{\odot }). Here, we present a follow-up survey with WFC3/IR on the Hubble Space Telescope (HST), using filters that are capable of distinguishing carbon-rich (C-type) stars from oxygen-rich (M-type) stars: F127M, F139M, and F153M. We include six star-forming DUSTiNGS galaxies (NGC 147, IC 10, Pegasus dIrr, Sextans B, Sextans A, and Sag DIG), all more metal-poor than the Magellanic Clouds and spanning 1 dex in metallicity. We double the number of dusty AGB stars known in these galaxies and find that most are carbon rich. We also find 26 dusty M-type stars, mostly in IC 10. Given the large dust excess and tight spatial distribution of these M-type stars, they are most likely on the upper end of the AGB mass range (stars undergoing Hot Bottom Burning). Theoretical models do not predict significant dust production in metal-poor M-type stars, but we see evidence for dust excess around M-type stars even in the most metal-poor galaxies in our sample (12+\mathrm{log}({\rm{O}}/{\rm{H}})=7.26\mbox{--}7.50). The low metallicities and inferred high stellar masses (up to ~10 M{M}_{\odot }) suggest that AGB stars can produce dust very early in the evolution of galaxies (~30 Myr after they form), and may contribute significantly to the dust reservoirs seen in high-redshift galaxies

    An eclipsing binary distance to the Large Magellanic Cloud accurate to 2 per cent

    Full text link
    In the era of precision cosmology it is essential to determine the Hubble Constant with an accuracy of 3% or better. Currently, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC) which as the second nearest galaxy serves as the best anchor point of the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to precisely and accurately measure stellar parameters and distances. The eclipsing binary method was previously applied to the LMC but the accuracy of the distance results was hampered by the need to model the bright, early-type systems used in these studies. Here, we present distance determinations to eight long-period, late- type eclipsing systems in the LMC composed of cool giant stars. For such systems we can accurately measure both the linear and angular sizes of their components and avoid the most important problems related to the hot early-type systems. Our LMC distance derived from these systems is demonstrably accurate to 2.2 % (49.97 +/- 0.19 (statistical) +/- 1.11 (systematic) kpc) providing a firm base for a 3 % determination of the Hubble Constant, with prospects for improvement to 2 % in the future.Comment: 34 pages, 5 figures, 13 tables, published in the Nature, a part of our data comes from new unpublished OGLE-IV photometric dat

    Infrared composition of the Large Magellanic Cloud

    Get PDF
    The evolution of galaxies and the history of star formation in the Universe are among the most important topics in today's astrophysics. Especially, the role of small, irregular galaxies in the star-formation history of the Universe is not yet clear. Using the data from the AKARI IRC survey of the Large Magellanic Cloud at 3.2, 7, 11, 15, and 24 {\mu}m wavelengths, i.e., at the mid- and near-infrared, we have constructed a multiwavelength catalog containing data from a cross-correlation with a number of other databases at different wavelengths. We present the separation of different classes of stars in the LMC in color-color, and color-magnitude, diagrams, and analyze their contribution to the total LMC flux, related to point sources at different infrared wavelengths

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200

    The expansion field: The value of H_0

    Full text link
    Any calibration of the present value of the Hubble constant requires recession velocities and distances of galaxies. While the conversion of observed velocities into true recession velocities has only a small effect on the result, the derivation of unbiased distances which rest on a solid zero point and cover a useful range of about 4-30 Mpc is crucial. A list of 279 such galaxy distances within v<2000 km/s is given which are derived from the tip of the red-giant branch (TRGB), from Cepheids, and from supernovae of type Ia (SNe Ia). Their random errors are not more than 0.15 mag as shown by intercomparison. They trace a linear expansion field within narrow margins from v=250 to at least 2000 km/s. Additional 62 distant SNe Ia confirm the linearity to at least 20,000 km/s. The dispersion about the Hubble line is dominated by random peculiar velocities, amounting locally to <100 km/s but increasing outwards. Due to the linearity of the expansion field the Hubble constant H_0 can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of 78 galaxies above this limit give H_0=63.0+/-1.6 at an effective distance of 6 Mpc. They compensate the effect of peculiar motions by their large number. Support for this result comes from 28 independently calibrated Cepheids that give H_0=63.4+/-1.7 at 15 Mpc. This agrees also with the large-scale value of H_0=61.2+/-0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of H_0=62.3+/-1.3 is adopted. Because the value depends on two independent zero points of the distance scale its systematic error is estimated to be 6%. Typical errors of H_0 come from the use of a universal, yet unjustified P-L relation of Cepheids, the neglect of selection bias in magnitude-limited samples, or they are inherent to the adopted models.Comment: 44 pages, 4 figures, 6 tables, accepted for publication in the Astronony and Astrophysics Review 15
    corecore